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Extent of force indeterminacy in packings of frictional rigid disks
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Static packings of frictional rigid particles are investigated by means of discrete element simulations. We
explore the ensemble of allowed force realizations in the space of contact forces for a given packing structure.
We estimate the extent of force indeterminacy with different methods. The indeterminacy exhibits a nonmono-
tonic dependence on the interparticle friction coefficient. We verify directly that larger force indeterminacy is
accompanied by a more robust behavior against local perturbations. We also investigate the local indetermi-
nacy of individual contact forces. The probability distribution of local indeterminacy changes its shape de-
pending on friction. We find that local indeterminacy tends to be larger on force chains for intermediate
friction. This correlation disappears in the large friction limit.
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In packings of relatively rigid particles, elastic deforma-
tions of the grains are typically several orders of magnitude
smaller than the grain size. Since this separation of length
scales occurs it is a natural idea to investigate the limit case
of infinite stiffness of the grains.

It is known that jammed packings of perfectly rigid par-
ticles with finite friction coefficient are “hyperstatic” [1,2].
The number of equations of mechanical balance is smaller
than the number of unknowns (components of the interpar-
ticle forces). This makes the problem undetermined in the
sense that there are many solutions that satisfy the equilib-
rium equations. Even taking constraint conditions, such as
Coulomb’s limit of friction and unilaterality of the contacts,
into account does not help to eliminate the indeterminacy of
the contact forces. Thus for a given packing geometry the
solutions define an ensemble of admissible force networks S
[3.4]. S is a convex set [5] in the force space F, spanned by
the components of contact forces, and its boundaries are de-
limited by constraint conditions.

The ensemble has received considerable attention since
many macroscopic properties of granular packings can be
derived from ensemble averaging over all allowed force
states supposing a uniform measure on S [6-11]. Further-
more, with this technique one can disentangle the effect of
forces and texture of the packing. Mathematically, the prob-
lem of finding the solutions of a set of undetermined equa-
tions and constraints is of rather broad interest, e.g., in meta-
bolic networks [12,13].

The extent of force indeterminacy in two-dimensional
(2D) random packings of perfectly rigid disks was investi-
gated theoretically and numerically in [14]. The indetermi-
nacy of each component of the contact forces was obtained,
suggesting that highly undetermined contacts are located on
main force chains. Force indeterminacy in such packings was
also measured in [5] where it turned out that the indetermi-
nacy depends nonmonotonically on the interparticle friction
coefficient due to the competition between two coexisting
effects: the opening of the Coulomb cone angle and the low-
ering of connectivity. In Ref. [15] similar nonmonotonic fric-
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tion dependence is obtained for mechanical response of the
granular packings to local perturbations.

In this Brief Report we examine whether the nonmono-
tonic friction dependence of force indeterminacy remains
valid also when other methods are used to quantify the “size”
of the solution set S. We measure numerically the extent of
force indeterminacy and the mechanical response to local
perturbations in the same packings and examine the relation
between them. The local force indeterminacy is also studied
in this work. First, we investigate its probability distribution,
then, we compare its spatial pattern to that of the force chains
in the packing.

Sampling procedure. The systems we investigate are 2D
random packings of 400 perfectly rigid disks. Periodic
boundary conditions are applied in both directions, disk radii
are uniformly distributed between 0.5 and 1, gravity is set to
zero, and the unit of the length is set to the maximum grain
radius. Our numerical simulations consist of two steps which
are performed with the help of contact dynamics algorithm
[16—18]. First we construct static configurations of particles.
The initial dilute systems are compressed by imposing a ho-
mogeneous confining pressure P to get the final static pack-
ings. The full description of our method of constructing the
homogeneous packings can be found in [19].

Then we explore the force ensemble: we collect force
networks that provide static solutions for the given contact
geometry and boundary conditions. We use a random-walk
method in the force space [5,20] starting with the original
force network. We perturb the original force state and jump
to a new force state in the force space F. The technique is to
add random values that are chosen uniformly from the inter-
val [—(F,),(F,)] to all components of the contact forces. (F,)
is the mean normal force calculated over the current values
of contact forces. The perturbed force network is given as the
input for the Gauss-Seidel-type iterative solver of the contact
dynamics method which lets the forces relax into a new con-
sistent state. The jump is accepted if the new state is an
equilibrium state, otherwise it is rejected. The perturbation
and relaxation are repeated many times, always starting from
the last equilibrium force network. In this way we collect
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1000 admissible force networks for a given static packing. In
order to study systematically the influence of the interparticle
friction coefficient on the extent of the force indeterminacy,
the constructing and sampling procedures are repeated for
various values of the friction coefficient.

Numerical results. We first quantify the extent of the force
indeterminacy » for a given packing geometry based on the
sampled force networks. We compare here three different
methods, since there is no a priori preferred way to measure
7. Let us denote the center of the samples in the force space

F by {60} which is a force network with contact force vec-
tors G, given by

éc:<ﬁc>states’ c:1’ ""NC’ (1)

where the average (- *“)qaes 1S taken over all realizations of
the force states and N, is the number of contacts. One pos-
sibility to quantify the force indeterminacy is to measure the

force fluctuations SF, around the mean force vector G, at
each contact ¢ [5],

SF,={((F,~ G )2 (2)

states*

The force indeterminacy 7, of the whole packing is given by
the relative fluctuation

— <5FC>COTIL
<|GC|>C0I1[.

where (- - )., denotes the average over all contacts.

The extent of the indeterminacy could be also estimated
by the Euclidean distance between randomly chosen pairs of
force states [7,14]. The probability distribution of the dis-
tances becomes sharply peaked if S is a high dimensional
object. The global indeterminacy according to this method is
defined via

7 (3)

((F} = TFY s |
GF ’

where {F.} and {F .} are two different force states and
(***)pairs means the average over all pairs of force states. The

(4)

h=

square of a force state {I;C}2 is given by EC}; 2,

As an alternative method [14], the extremal points of S
along each axis of the force space F provide the following
measure of the indeterminacy:

[max _ pmin

7= <<F+F—>>C°mR (5)
2 comp.
Here, F™> and F™" are the maximum and minimum values
of a contact force component (either normal or tangential).
The average (- *)comp. s taken over all 2 X N, components of
contact forces. We note that these are mathematically three
different measures that give different results depending on
the circumstances, e.g., the first two methods [Egs. (3) and
(4)] depend on the probability measure that is realized by the
sampling. This is not the case for 7; which has a pure geo-
metrical definition (provided the sampling explores the solu-
tion set). The question whether the sampling is uniform or
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FIG. 1. Force indeterminacy 7, quantified with different meth-
ods that are explained in the text, in terms of the friction coefficient
. Inset displays the same plot in log-log scale. The average coor-
dination number z as a function of w is also shown (triangles).

not has no effect on the value of 7;. Our numerical tests (not
shown) reveal that the values of 7; are well reproducible and
do not strongly depend on the total number of grains.

In Fig. 1 we compare the values of # obtained by the
three methods which, up to a constant factor, provide basi-
cally the same behavior in the whole range of friction (7,
=~ 1,~0.157;). The nonmonotonic friction dependence, re-
ported in [5], is reproduced here independently of the quan-
tifying method. We note that the average coordination num-
ber z of the packing depends strongly on the friction
coefficient (inset of Fig. 1); consequently, the dimension of S
is varied with u.

Next we investigate the effect of 7 on the mechanical
response of granular packings. In Refs. [15,21] local pertur-
bations were used to break the equilibrium structure of the
homogeneous packings and induce motion of the grains. It
turned out that the displacements of the particles due to local
perturbations decay as a power law of the distance from the
perturbation point. The numerical experiment was repeated
for several packings constructed with different u revealing
that the decay exponent « and the critical force Fj, i.e., the
force needed to break the mechanical equilibrium, exhibit a
nonmonotonic dependence on the friction with extrema at
wm=0.1 similarly to the behavior of #. This similarity sug-
gests the picture that a packing with larger force indetermi-
nacy becomes more stable against perturbations. Here, we
test directly whether such a relation exists. Together with the
force indeterminacy we determine also the response quanti-
ties F;; and « for the same packing configurations. Since the
different methods we used to quantify #» are basically equiva-
lent, we plot the response quantities in terms of 7, in Fig. 2.
The same series of packings are plotted here as in Fig. 1. The
lines are connecting the data points in the order of increasing
friction. Both F_;, and « are strongly related to the extent of
force indeterminacy, although they are not a unique function
of #. Still, very different packings (with different density,
connectivity, and frictional properties) exhibit similar re-
sponse properties if their 7 values are close to each other.

The quantity 7, as a global parameter, provides a good
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FIG. 2. The average critical force (F,) scaled by the average
normal contact force (F,,) (left) and the decay exponent « (right)
as functions of the force indeterminacy 7, for packings that are
constructed with different friction coefficients.

estimate of the size of S. In order to learn more details on the
structure of the solution set we study the indeterminacy also
locally at the level of individual contacts. In Fig. 3 we show
the values of normal contact forces F, for every contact ob-
tained by the sampled realizations of force states. We note
that the data points are highly correlated, the contact forces
cannot vary independently of each other, but here we inves-
tigate only how the solution set S is elongated along each
“F,” axis. At each contact the possible values of F, form an
interval AF, because these values are the projection of the
convex solution set S onto the F, axis. The length of the
interval AF, serves as a measure of the local indeterminacy
at a given contact and can be estimated with the help of
extrema of F, that were provided by the sampling procedure.

Figure 3 reveals that the fluctuations of the lengths AF,
grow nonmonotonically with friction similarly to the behav-
ior of 5. Moreover, it can be also seen from Fig. 3 that the
length of AF, varies widely from one contact to another,
even for a given friction coefficient. We now aim to investi-
gate how frequent the different magnitudes of the local inde-
terminacies are. In Fig. 4 we show the probability distribu-
tion of AF, for different friction coefficients. P(AF,) is a
monotonically decreasing function for small and large fric-
tion limits, but becomes broader and displays a peak for
intermediate friction coefficients. This shows that the value
of friction coefficient has even a geometrical signature in the
solution set. Intermediate values of u provide a more com-
pact shape of S in the sense that the frequency of extreme
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FIG. 3. The possible values of the normal contact forces F,
(denoted by dots and mostly merged to intervals), scaled by the
normal component of the original contact force F ¢, are shown for
each contact of the packing. Each plot corresponds to the packing
with the given friction coefficient. The fluctuations are small for
small and large p and become larger at intermediate w.
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FIG. 4. The probability distribution of the interval of possible
normal contact forces for several friction coefficients w. Insets dis-
play semilogarithmic probability distributions for three different pu.

dimensions are suppressed compared to the case of small and
large p where we find more pronounced extremes and there-
fore a more elongated shape of the solution set. The tail of
P(AF,) follows exponential decay for small frictions, while
it decays faster (slower) than exponential for intermediate
(large) frictions (see the insets of Fig. 4).

Finally, we investigate the spatial distribution of the inde-
terminacy throughout the system. The aim is to find whether
contacts that are located in a main force chain carry also
larger force indeterminacies. In Fig. 5 (full circles) we plot
the location of contacts that have larger F, than twice of the
average normal contact force (F,) (according to the original
force network in the packing). We also plot the contacts with
large force indeterminacy AF, (open circles) above the av-
erage (AF,). This way approximately the same number of
open and full circles is plotted. It can be seen that contacts in
force chains tend to have larger force indeterminacy in case
of intermediate friction [Fig. 5(a)], but for u=10 the two
patterns become seemingly different [Fig. 5(b)]. Indeed, if
we determine the correlation between AF, and F, over all
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FIG. 5. The position of the contacts with original normal force
F,, larger than 2(F,) (@) and the position of the contacts with force
indeterminacy AF, larger than (AF,) (©) in the packing with (a)
©=0.1 and (b) u=10.
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FIG. 6. The correlation between the normal component of the
original contact force F, and the force indeterminacy AF, in terms
of the friction coefficient u. Error bars display the maximum pos-
sible change in the correlation values when an arbitrary force net-
work is chosen.

contacts of the original force network and plot it against the
friction coefficient (Fig. 6), it reveals that the correlation
vanishes for large frictions. Interestingly, the correlation ex-
hibits again a nonmonotonic dependence on friction, where
significant correlations are present for the intermediate fric-
tion regime and weaker correlations outside. This may have a
statistical origin. When the indeterminacy is large (interme-
diate friction) it is plausible to expect that the correlation
between AF, and F, is enhanced, since finding a large force
is more probable in a large interval of positive normal forces.

We note that local force indeterminacies can be seen ev-
erywhere in our packings. This is in contrast to what has
been reported in Ref. [5], where in case of large friction
undetermined contacts formed localized clusters while con-
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tact forces in the rest of the packing became uniquely deter-
mined. Such localization is absent in the present study. We
think that this difference originates from the different bound-
ary conditions. In [5] the forces were kept fixed at the bound-
ary which furthers the formation of a fully determined re-
gion. This is not the case here, where we prescribe only the
global pressure.

Conclusion. In this Brief Report we presented the numeri-
cal results of the measurement of force indeterminacy in
packings of frictional hard disks. We quantified the global
force indeterminacy # of the packing with different methods
and systematically studied the effect of interparticle friction
coefficient. 7 depends nonmonotonically on friction. We
showed that the extent of force indeterminacy has an impor-
tant influence on the mechanical response properties of the
material.

The indeterminacy was also studied locally at the level of
individual contacts. As a consequence, we observed a non-
monotonic influence of the friction on the shape of the solu-
tion set. Small and large values of the friction coefficient
enhance the relative weight of extreme dimensions and lead
to a more elongated solution set in the force space. We found
significant correlation between the spatial pattern of the force
indeterminacy and force chains for intermediate friction,
however, the correlation disappeared in the large friction
limit.
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